Enumerations of Finite Topologies Associated with a Finite Simple Graph
نویسندگان
چکیده
منابع مشابه
quasirecognition by prime graph of finite simple groups ${}^2d_n(3)$
let $g$ be a finite group. in [ghasemabadi et al., characterizations of the simple group ${}^2d_n(3)$ by prime graph and spectrum, monatsh math., 2011] it is proved that if $n$ is odd, then ${}^2d _n(3)$ is recognizable by prime graph and also by element orders. in this paper we prove that if $n$ is even, then $d={}^2d_{n}(3)$ is quasirecognizable by prime graph, i.e...
متن کاملA Kind of Non-commuting Graph of Finite Groups
Let g be a fixed element of a finite group G. We introduce the g-noncommuting graph of G whose vertex set is whole elements of the group G and two vertices x,y are adjacent whenever [x,y] g and [y,x] g. We denote this graph by . In this paper, we present some graph theoretical properties of g-noncommuting graph. Specially, we investigate about its planarity and regularity, its clique number a...
متن کاملA Simple Classification of Finite Groups of Order p2q2
Suppose G is a group of order p^2q^2 where p>q are prime numbers and suppose P and Q are Sylow p-subgroups and Sylow q-subgroups of G, respectively. In this paper, we show that up to isomorphism, there are four groups of order p^2q^2 when Q and P are cyclic, three groups when Q is a cyclic and P is an elementary ablian group, p^2+3p/2+7 groups when Q is an elementary ablian group an...
متن کاملSome finite groups with divisibility graph containing no triangles
Let $G$ be a finite group. The graph $D(G)$ is a divisibility graph of $G$. Its vertex set is the non-central conjugacy class sizes of $G$ and there is an edge between vertices $a$ and $b$ if and only if $a|b$ or $b|a$. In this paper, we investigate the structure of the divisibility graph $D(G)$ for a non-solvable group with $sigma^{ast}(G)=2$, a finite simple group $G$ that satisfies the one-p...
متن کاملFinite groups admitting a connected cubic integral bi-Cayley graph
A graph is called integral if all eigenvalues of its adjacency matrix are integers. Given a subset $S$ of a finite group $G$, the bi-Cayley graph $BCay(G,S)$ is a graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(sx,2)}mid sin S, xin G}$. In this paper, we classify all finite groups admitting a connected cubic integral bi-Cayley graph.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyungpook mathematical journal
سال: 2014
ISSN: 1225-6951
DOI: 10.5666/kmj.2014.54.4.655